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Abstract

Connected automated vehicles (CAVs) have shown great potential in improving traffic throughput and stability. Although
various longitudinal control strategies have been developed for CAVs to achieve string stability in mixed-autonomy traffic systems,
the potential impact of these controllers on safety has not yet been fully addressed. This paper proposes safety-critical traffic
control (STC) by CAVs—a strategy that allows a CAV to maintain safety relative to both the preceding vehicle and the following
human-driven vehicles (HVs). Specifically, we utilize control barrier functions (CBFs) to impart collision-free behavior with formal
safety guarantees to the closed-loop system. The safety of both the CAV and HVs is incorporated into the framework through
a quadratic program-based controller that minimizes deviation from a nominal stabilizing traffic controller subject to CBF-based
safety constraints. Considering that some state information of the following HVs may be unavailable to the CAV, we employ state
observer-based CBFs for STC. Finally, we conduct extensive numerical simulations—that include vehicle trajectories from real
data—to demonstrate the efficacy of the proposed approach in achieving provably safe traffic.
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1 INTRODUCTION

The efficiency of transportation is largely affected by the smoothness of the traffic flow. As such, highway traffic often
suffers from traffic oscillations, in which the vehicles driving on the road undergo repeated deceleration-acceleration motions.
These oscillations may even amplify along the road, indicating the so-called string instability of traffic, that ultimately leads
to stop-and-go traffic congestion. Congestion, on one hand, negatively impacts travel time and fuel consumption. On the other
hand, it also poses additional risk of conflict or collision between vehicles, thereby adversely affecting traffic safety. Therefore,
significant research efforts have been invested into mitigating the traffic oscillations by stabilizing traffic, and the area of traffic
control has emerged as a solution.

This work focuses on providing a safety-critical solution to traffic control through regulating the motions of connected
automated vehicles (CAVs) traveling in the traffic flow. Our goal is to control the CAVs such that they facilitate string stability
for the traffic behind them while also guaranteeing that a safe distance is always kept between the neighboring vehicles. To
highlight the need for and the benefits of the proposed approach, we first give a brief overview on the relevant literature on
stabilizing traffic controllers and traffic safety.

1.1 Traffic Control by Connected Automated Vehicles

Research work on traffic control first relied on conventional road-based traffic control systems, such as ramp-metering or
varying speed limits, that regulate traffic on spatially-fixed road segments in a centralized manner [24], [73], [74], [76]. Then,
the rapid development of CAV technology has drawn extensive attention to vehicle-based traffic control of transportation
systems through information sharing and coordination between CAVs [15], [16], [44], [56], [57], [77], [78]. Vehicle-based
traffic controllers rely on regulating the driving behavior of CAVs, through which the smoothness and throughput of traffic is
positively impacted. These distributed, vehicle-based traffic control techniques are the main focus of our work.

There exist several linear and nonlinear feedback control strategies for regulating the motions of CAVs, that rely on
various topologies in vehicle-to-vehicle (V2V) communication, different levels of automation on CAVs, and various formation
geometries of multiple CAVs [30]. Early studies focused on adaptive cruise control (ACC) [38] that automatically adjusts the
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speed of automated vehicles to maintain a safe distance from the preceding vehicle. Extended from ACC, cooperative adaptive
cruise control (CACC) [4], [40] was developed to control platoons of CAVs by leveraging V2V connectivity. CACC frameworks
include, for example, linear feedback controllers that mitigate disturbances in the platoon [40] and model predictive controllers
that also guarantee safe distances between adjacent vehicles [39]. Furthermore, control strategies were also proposed for a
single CAV instead of an entire platoon, such as the framework of connected cruise control (CCC) [49].

Despite the promising future envisioned for fully connected and automated traffic systems, a long transition period is
inevitable in which CAVs and human-driven vehicles (HVs) coexist. Many recent research works, therefore, have addressed
mixed-autonomy traffic where only a portion of the vehicles are CAVs [17], [27], [56], [62], [65], [67], [79], [81]. In particular,
some of these works have been focusing on how CAVs can influence the overall traffic. In [17] a single automated vehicle was
used to stabilize the traffic flow. The ability of CAVs to dampen stop-and-go waves in mixed traffic was also demonstrated by
experiments in [20], [56] and by theoretical analysis in [10], [25], [32], [72]. The controllability and reachability of mixed-
autonomy traffic were studied by [79], which proved that a single CAV can stabilize traffic in the ring-road setting.

In this work, we rely on a specific traffic control strategy by CAVs, that was proposed as connected traffic control (CTC)
in [42], [43] and as leading cruise control (LCC) in [62], [64]. Both of these approaches control the CAV such that it
simultaneously adapts its motion to follow the preceding HVs and to lead the following HVs—ultimately allowing the mitigation
of traffic oscillations. While these approaches provide the desired string stable behavior, they lack formal guarantees about
maintaining safe distances between the vehicles, which our present work seeks to address.

1.2 Safety of Mixed-autonomy Traffic

Safety is of paramount importance for traffic systems. Although many studies address the potential improvement of effi-
ciency [28], [40], [53], [57], energy-saving [51], [60] and stability [17], [65], [79] of the mixed traffic by adopting CAVs,
only a few existing works have attempted to evaluate the impact of CAVs on traffic safety. These works include studies about
safety under different CAV penetration rates [33], [50], [71] and in signalized intersections [9], [47].

The traffic safety is usually guaranteed by reducing the risk of rear-end collisions. Therefore, a number of safety indicators,
also known as surrogate safety measures, have appeared to evaluate the rear-end collision risk by establishing the relationship
between the longitudinal safety and car-following state [33], [50], [61]. Some of these safety measures are time-based indicators,
such as time headway (TH) and time to collision (TTC), which are constructed based on the time that elapses before a collision
could occur [61]. Others measures are distance-based indicators, such as distance headway (DH) and minimum stopping distance
headway (SDH), which evaluate safety based on the spacing gap between the vehicles [52], [59]. These metrics are essential
to construct safety-critical longitudinal controllers for CAVs.

Safety-critical control is usually approached by constraint-handling control methods such as classical optimal control, model
predictive control, barrier Lyapunov function (BLF) [82] and control barrier function (CBF) [6], [7], [29], [68]. In this work, we
rely on the framework of CBFs to maintain safety, due to its ability to take advantage of existing nominal controllers such as
those that stabilize traffic. Importantly, CBFs have been applied on a wide range of safety-critical systems, including adaptive
cruise control [8] and its experimental implementation on heavy-duty trucks [5], automated vehicle experiments in multi-lane
traffic [21], obstacle avoidance with automated vehicles [14], multi-agent systems representing automated vehicles [26], traffic
merging [69], and roundabout crossing [1].

Although the stabilization of traffic by CAVs and the safety-critical control of CAVs have been studied separately in the
literature, the integration of these two have not yet been accomplished, to the best of our knowledge. Some works have
conducted analysis in this area, such as [31] that quantified the trade-off between stability and safety, and [22], [37], [54] that
pointed out that CAVs usually leave comparable or even longer headway than HVs for safety concerns. Our present work
intends to fill this gap, via proposing safety-critical traffic control by CAVs. Specifically, a stabilizing nominal traffic controller
is adopted, from which a safety-critical controller is synthesized for CAVs with minimum deviation from the nominal controller.

1.3 Contributions

This paper focuses on providing safety guarantees for mixed-autonomy traffic, which is still an open problem in the literature.
In particular, we consider safety-critical control of mixed-autonomy traffic by regulating the motion of a CAV that responds
to both preceding and following vehicles. We study the case where a single CAV seeks to stabilize the motion of a vehicle
chain behind it by the help of connectivity with at least one human-driven vehicle behind the CAV, while also maintaining
guaranteed safety. In our previous work [80], we have made an initial step towards this goal, and this paper extends that research
by addressing the fact the CAV may not have access to the states of all neighboring vehicles (i.e., it relies on partial state
feedback), and by analyzing the underlying performance in more detail. The main contribution of this paper is that we propose
a safety-critical traffic control (STC) strategy, which provides guaranteed safety for both the CAV and following vehicles, in
the cases of full and partial state feedback.

The proposed STC framework is illustrated in Fig. 1 for single-lane mixed traffic including a CAV and several HVs. We
control the CAV by assuming that: (I) the CAV detects the head human-driven vehicle (HHV) by on-board range sensors; and
(II) at least one of the following HVs is a connected human-driven vehicle (CHV) which the CAV communicates with. That is,
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Fig. 1: The proposed safety-critical traffic control (STC) framework, wherein mixed traffic is maintained safe by controlling
a connected automated vehicle (CAV) amongst human-driven vehicles (HVs) while leveraging vehicle-to-vehicle connectivity
with at least one connected human-driven vehicle (CHV) behind the CAV. The STC framework has a hierarchical structure
with a traffic operator at the top, that can be used to design the desired steady state of the traffic flow, a nominal stabilizing
controller in the middle, that drives the CAV to mitigate traffic congestion without considering safety, and a safety filter at the
bottom, that modifies the nominal control input to establish formal safety guarantees for collision avoidance between vehicles.

the CAV measures its own speed 𝑣0, its spacing 𝑠0, and the speed 𝑣−1 of the HHV, while connectivity provides access for the
CAV to the speed 𝑣𝑁 of the CHV. At the same time, the HVs between the CAV and the CHV may not be detected, their states
(speeds 𝑣𝑖 and spacings 𝑠𝑖) may be unknown to the CAV, but these can be observed by using the data from connectivity. This
traffic state information is used in a three-layer hierarchical control structure. In the top layer, a traffic operator can be used
to command the desired steady states (spacing and velocity) for the mixed traffic. These desired states can be taken from the
states of head vehicles, or be calibrated using historical states, or be given from a high-level macroscopic traffic management
system [73]. In the middle layer, a nominal stabilizing controller regulates the motion of the CAV in order to drive the traffic
towards the desired steady states and fulfill the operator’s command, in a string stable fashion. In the bottom layer, a safety
filter modifies the nominal stabilizing control input using control barrier functions (CBFs) to guarantee safety, and then outputs
the final safety-critical controller for the CAV. This framework not only enables flexibility to choose different designs at each
layer, but also provides privacy by keeping the details of each design to its own layer only.

The rest of this paper mainly focuses on the safety-critical bottom control layer. The STC framework is established and
verified through the following contributions.

• A quadratic program-based controller is constructed to synthesize a safety-critical control input for the CAV. Using this
controller, safety guarantees are provided both for the CAV as a hard constraint and for the following HVs as soft
constraints. These guarantees are based on various safety measures (TH, TTC and SDH) that are analyzed and compared.

• STC is further extended to the case of output feedback with the help of state observers, to address scenarios in which
the CAV does not have access to the states of all the HVs but only to the state of at least one CHV. A state-observer is
designed, and a robust CBF is derived to guarantee safety even with inaccurate state estimation.

• Extensive numerical simulations are conducted to show the benefits of the proposed STC, identify its limitations, and
analyze the effect of parameters. The simulations also incorporate real trajectory data for the head HV.

The rest of this paper is organized as follows. Section 2 presents the modeling of mixed-autonomy traffic, and revisits a
nominal control approach for CAVs to stabilize traffic. Section 3 introduces the framework of STC, to modify the nominal
controller and endow it with formal safety-guarantees. To this end, safe spacing policies are described, the theory of control
barrier functions is revisited, and state observers are utilized in case of output feedback. Section 4 provides extensive numerical
simulations (that involve vehicle trajectories from real data) to demonstrate the efficacy of STC. Section 5 concludes the paper.
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2 SMOOTHING MIXED-AUTONOMY TRAFFIC BY CONNECTED AUTOMATED VEHICLES

We first model the longitudinal dynamics of mixed-autonomy traffic. We consider a single-lane scenario that involves a head
vehicle (HHV), followed by a single connected automated vehicle (CAV) and 𝑁 subsequent human-driven vehicles (HVs);
see Fig. 1. We revisit the notion of string stability and design a nominal controller for the CAV that can stabilize the traffic
behind it. We first consider that all HVs are connected to the CAV, then address the case of partial connectivity with a single
connected human-driven vehicle (CHV). This controller will be endowed with provable safety guarantees in the next section.

2.1 Modeling of Mixed-autonomy Traffic

The mixed-autonomy traffic model constitutes two parts: a car-following model for HVs and a model for the longitudinal
control of the CAV. The car-following dynamics of the HVs (indexed 𝑖 ∈ {1, . . . , 𝑁}) are described as

¤𝑠𝑖 = 𝑣𝑖−1 − 𝑣𝑖 ,

¤𝑣𝑖 = 𝐹𝑖 (𝑠𝑖 , ¤𝑠𝑖 , 𝑣𝑖) ,
(1)

where 𝑠𝑖 ∈ R represents the spacing (distance headway) between HV 𝑖 and its predecessor vehicle 𝑖 − 1. Function 𝐹𝑖 : R3 → R
describes how HV 𝑖 controls its acceleration for car-following as a function of its own velocity 𝑣𝑖 ∈ R, the spacing 𝑠𝑖 and
the derivative ¤𝑠𝑖 ∈ R of the spacing (i.e., the relative speed). For the CAV (with index 𝑖 = 0), the longitudinal dynamics are
governed by

¤𝑠0 = 𝑣−1 − 𝑣0,

¤𝑣0 = 𝑢,
(2)

where the acceleration of the CAV is the control input 𝑢 ∈ R to be designed, and 𝑣−1 ∈ R is the velocity of the HHV (𝑖 = −1).
The state of the mixed-autonomy traffic model (1)-(2) is 𝑛 = 2𝑁 + 2 dimensional, and it consists of the spacing and speed

of the CAV and the following HVs, given by 𝑥 ∈ R𝑛,

𝑥 =
[
𝑠0 𝑣0 . . . 𝑠𝑁 𝑣𝑁

]>
. (3)

This leads to a general nonlinear mixed-autonomy traffic model

¤𝑥 = 𝑓 (𝑥, 𝑟) + 𝑔(𝑥)𝑢, (4)

𝑓 (𝑥, 𝑟) =


𝑓0 (𝑥, 𝑟)
𝑓1 (𝑥)
...

𝑓𝑁 (𝑥)


, 𝑔(𝑥) =


𝑔0

02×1
...

02×1


, 𝑓0 (𝑥, 𝑟) =

[
𝑣−1 − 𝑣0

0

]
, 𝑓𝑖 (𝑥) =

[
𝑣𝑖−1 − 𝑣𝑖

𝐹𝑖 (𝑠𝑖 , 𝑣𝑖−1 − 𝑣𝑖 , 𝑣𝑖)

]
, 𝑔0 =

[
0
1

]
, (5)

where 𝑟 = 𝑣−1 is a time-varying reference signal, 02×1 is the two dimensional zero vector, and 𝑓 : R𝑛 × R→ R𝑛, 𝑔 : R𝑛 → R𝑛.
Note that, alternatively, one could also formulate this model using the longitudinal positions 𝑝𝑖 of the vehicles’ rear bumper,
that are related to the spacings 𝑠𝑖 through the vehicle lengths 𝑙𝑖 as 𝑠𝑖 = 𝑝𝑖−1 − 𝑝𝑖 − 𝑙𝑖 .

For simplicity, we design a nominal controller for the CAV based on linearization of the dynamics. Thus, we first consider
the steady state of the system, given by the equilibrium speed 𝑣★ as 𝑣𝑖 (𝑡) ≡ 𝑣★ and the equilibrium spacing 𝑠★𝑖 as 𝑠𝑖 (𝑡) ≡ 𝑠★𝑖 ,
𝑖 ∈ {0, . . . , 𝑁}. Note that the equilibrium spacing 𝑠★𝑖 of the HVs (𝑖 ∈ {1, . . . , 𝑁}) satisfy

𝐹𝑖
(
𝑠★𝑖 , 0, 𝑣

★) = 0, (6)

and these may be different from the equilibrium spacing 𝑠★0 of the CAV that is determined by its controller. The equilibrium
speed 𝑣∗ could be designed by government policy or macroscopic control policies that optimize the whole traffic flow [73];
cf. Fig. 1. Without external guidance of a desired 𝑣∗, we can take the head vehicle’s constant speed as equilibrium speed 𝑣∗

so that the following vehicles will drive at the same speed.
Using the perturbations 𝑠𝑖 = 𝑠𝑖 − 𝑠★𝑖 and 𝑣̃𝑖 = 𝑣𝑖 − 𝑣★, the linearized dynamics can be obtained from (1)-(2) as

¤̃𝑠𝑖 = 𝑣̃𝑖−1 − 𝑣̃𝑖 ,

¤̃𝑣𝑖 = 𝑎𝑖1𝑠𝑖 − 𝑎𝑖2𝑣̃𝑖 + 𝑎𝑖3𝑣̃𝑖−1,
(7)

where 𝑎𝑖1 = 𝜕𝐹𝑖

𝜕𝑠𝑖
, 𝑎𝑖2 = 𝜕𝐹𝑖

𝜕 ¤𝑠𝑖 − 𝜕𝐹𝑖

𝜕𝑣𝑖
, 𝑎𝑖3 = 𝜕𝐹

𝜕 ¤𝑠𝑖 are evaluated at the steady states, and

¤̃𝑠0 = 𝑣̃−1 − 𝑣̃0,

¤̃𝑣0 = 𝑢.
(8)

The state of the linearized mixed-autonomy traffic model is

𝑥 =
[
𝑠0 𝑣̃0 . . . 𝑠𝑁 𝑣̃𝑁

]>
, (9)
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hence (7)-(8) can be written in the compact form

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑟, (10)

𝐴 =


𝑃0
𝑄1 𝑃1

. . .
. . .

𝑄𝑁 𝑃𝑁


, 𝐵 =


𝑏0

02×1
...

02×1


, 𝐷 =


𝑑0

02×1
...

02×1


, 𝑃0 =

[
0 −1
0 0

]
, 𝑃𝑖 =

[
0 −1
𝑎𝑖1 −𝑎𝑖2

]
, 𝑄𝑖 =

[
0 1
0 𝑎𝑖3

]
, 𝑏0 =

[
0
1

]
, 𝑑0 =

[
1
0

]
,

(11)
where 𝑟 = 𝑣̃−1 and 𝐴 ∈ R𝑛×𝑛, 𝐵, 𝐷 ∈ R𝑛. We use the same notation 𝑥 for the state of the nonlinear system (4) and the linear
one (10) to emphasize that the proposed STC works for both of these two system formulations.

The models (4) and (10) describe mixed-autonomy traffic for the general case where the CAV can detect both the preceding
vehicle and the following vehicles. In application, there could also occur two special cases where the CAV is at the head or the
tail of the vehicle chain. If the CAV is the head vehicle (i.e., there is no HHV ahead of it, or it is far enough to be ignored),
then we can still formulate the system with 𝑓0 (𝑥, 𝑟) = 02×1 or 𝑑0 = 02×1. If the CAV is at the tail of the vehicle chain (i.e.,
there are no connected follower HVs), then the model applies with the state 𝑥 =

[
𝑠0 𝑣̃0

]>.
In this paper, we focus on the longitudinal control of the CAV. The lateral dynamics of the CAV, or those of potential

cutting-in vehicles during the lane-changing process, are out of the scope of this paper, although our work could be integrated
with lateral controllers to enhance safety [46]. For example, if a vehicle cut into the lane between the CAV and the HHV, then
our model would only consider this event by setting this vehicle as the new HHV after the cut-in.

2.2 Nominal Controller Design and Head-to-tail String Stability

Now we design a nominal control input 𝑢0 that allows the CAV to follow the head vehicle while leading 𝑁 HVs such that
the resulting traffic flow is smooth—specifically, string stable. In the next section, we modify 𝑢0 to an input 𝑢 that also has
formal safety guarantees for collision avoidance (without restriction on the choice of the nominal controller 𝑢0).

Connectivity allows the CAV to obtain the speeds 𝑣𝑖 and positions 𝑝𝑖 of the HVs based on GPS and basic safety messages.
This information characterizes the state of the human-driven traffic behind the CAV, hence the CAV may use these data to
control and stabilize the traffic flow, ultimately mitigating traffic congestions. This led to the idea of connected traffic control
(CTC) in [42], [43], where the CAV responds to the state 𝑣𝑖 , 𝑝𝑖 of the HVs (obtained from connectivity) while considering
the state 𝑣−1, 𝑝−1 of the head vehicle (provided by range sensors or connectivity), using a control law of the form

𝑢0 = 𝐹̄0 (𝑝−1, 𝑣−1, 𝑝0, 𝑣0, 𝑝1, 𝑣1, . . . , 𝑝𝑁 , 𝑣𝑁 ). (12)

Note that if the CAV is not connected to an HV and does not have access to its state, the corresponding state 𝑝𝑖 , 𝑣𝑖 is omitted
from the response. Examples for CTC (12) and their analysis in the presence of response delays can be found in [42].

In special cases, the positions 𝑝𝑖 can be converted into the spacings 𝑠𝑖 , resulting in a controller:

𝑢0 = 𝐹0 (𝑣−1, 𝑠0, 𝑣0, 𝑠1, 𝑣1, . . . , 𝑠𝑁 , 𝑣𝑁 ). (13)

This conversion requires that all longitudinal positions 𝑝𝑖 and vehicle lengths are known to the CAV or, alternatively, CHVs
could also potentially communicate their spacing (i.e., realize cooperative perception). Furthermore, if the CAV even has access
to the perturbations 𝑠𝑖 , 𝑣̃𝑖 (not just 𝑠𝑖 , 𝑣𝑖), then a linear controller can be formulated as

𝑢0 = 𝑎1𝑠0 − 𝑎2𝑣̃0 + 𝑎3𝑣̃−1 +
𝑁∑
𝑖=1

(𝜇𝑖𝑠𝑖 + 𝑘𝑖 𝑣̃𝑖) , (14)

where 𝜇𝑖 , 𝑘𝑖 are the feedback gains corresponding to the state of vehicle 𝑖. These gains can be designed based on the linear
model (10). Controller (14) is called leading cruise control (LCC), and it was proposed in [62].

The above traffic control strategies can be compactly written as

𝑢0 = 𝑘0 (𝑥, 𝑟), (15)

where the state 𝑥 and reference signal 𝑟 can be associated either with the nonlinear model (4) or with the linear model (10).
For simplicity, the examples of this paper are presented for the linear model (10) and the linear LCC strategy (14) as nominal
controller, under the assumption that the parameters of the HVs are identical: 𝑎𝑖1 = 𝑎1, 𝑎𝑖2 = 𝑎2, 𝑎𝑖3 = 𝑎3, ∀𝑖 ∈ {1, . . . , 𝑁}.
The general framework of STC, however, could accommodate any other nominal stabilizing controller of the form (15).

In order to design the gains 𝜇𝑖 , 𝑘𝑖 of the nominal controller (14), first we notice that the pair (𝐴, 𝐵) is controllable for
𝑎1 − 𝑎2𝑎3 + 𝑎2

3 ≠ 0, which was proven in [62]. Under this condition, we can design the control gains such that speed
perturbations decay along the chain of vehicles and traffic congestions are mitigated, i.e., the closed-loop system is string
stable. While there exist various definitions of string stability [19], suited both for nonlinear and linear dynamics, we focus on
one particular notion, head-to-tail string stablity [75], that is convenient for the analysis of linear systems.
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Head-to-tail string stability is frequently used to evaluate the CAV’s ability to attenuate velocity fluctuations, thereby miti-
gating congestions, smoothing and stabilizing traffic. Given the Laplace transforms 𝑉−1 (𝑠), 𝑉̃𝑁 (𝑠) of the velocity perturbations
𝑣̃−1 (𝑡), 𝑣̃𝑁 (𝑡) of the head and tail vehicles, the head-to-tail transfer function [75] is defined as

𝐺 (𝑠) = 𝑉𝑁 (𝑠)
𝑉−1 (𝑠)

. (16)

This function characterizes how much speed perturbations amplify along the mixed chain of 𝑁 + 2 vehicles. Head-to-tail string
stability holds if and only if [75]

|𝐺 (j𝜔) |2 < 1, ∀𝜔 > 0, (17)

where j2 = −1. This condition means that the speed fluctuations of the tail vehicle are smaller in steady state than those of the
head vehicle for any angular frequency 𝜔.

For the linearized system (10) with controller (14), [62] derived the head-to-tail transfer function in the form

𝐺 (𝑠) = 𝜙(𝑠)

𝜓(𝑠) −∑𝑁
𝑖=1

(
𝜇𝑖

(
𝜙 (𝑠)
𝜓 (𝑠) − 1

)
+ 𝑘𝑖𝑠

) (
𝜓 (𝑠)
𝜙 (𝑠)

) 𝑖 ( 𝜙(𝑠)𝜓(𝑠)

)𝑁
, (18)

with
𝜙(𝑠) = 𝑎3𝑠 + 𝑎1, 𝜓(𝑠) = 𝑠2 + 𝑎2𝑠 + 𝑎1. (19)

This expression enables one to design 𝜇𝑖 and 𝑘𝑖 such that (17) holds and head-to-tail string stability is attained; see [62].

2.3 Observer Design

Notice that controllers of the form (15) rely on the full state 𝑥 of the system. As stated in [63], however, it may be difficult
to measure all state variables in 𝑥. Instead, an output 𝑦 ∈ R𝑛𝑦 may be available, given by a function 𝑐 : R𝑛 → R𝑛𝑦 of the state:

𝑦 = 𝑐(𝑥). (20)

This is also the case when some of the HVs are not equipped with communication devices and their speeds and gaps are
unavailable to the CAV. Then, we have the output as

𝑦 = 𝐶𝑥, (21)

with 𝐶 ∈ R𝑛𝑦×𝑛 being the observation matrix. For example, if only vehicle 𝑁 is a CHV, like in Fig. 1, then the CAV can only
have access to the velocity 𝑣𝑁 and its own state 𝑠0 and 𝑣0, or the corresponding perturbations 𝑣̃𝑁 , 𝑠0 and 𝑣̃0. This leads to

𝑦 =
[
𝑠0 𝑣̃0 𝑣̃𝑁

]>
, (22)

and the observation matrix

𝐶 =


1 0 · · · 0
0 1 0 · · · 0
0 · · · 0 1

 . (23)

In order to overcome that only the output 𝑦 is available instead of the full state 𝑥, we use state observers to establish
an estimate 𝑥 of the state using the output. This requires the state of the system to be observable. The observability of the
linear mixed-autonomy traffic model (10) is discussed in [62], where it is shown that the CAV needs access to at least 𝑠0,
𝑣̃0 and 𝑣̃𝑁 in order for the state of the vehicle chain between the CAV and the CHV to be observable. This is the minimum
information required to design an observer. Both for linear and nonlinear dynamics, state observers are usually constructed
as dynamical systems that describe the evolution of the estimated state 𝑥 with corresponding estimated output 𝑦̂ = 𝑐(𝑥). For
example, control-affine observers are of the form

¤̂𝑥 = 𝑓 (𝑥, 𝑟, 𝑦) + 𝑔̃(𝑥, 𝑟, 𝑦)𝑢 (24)

where the dynamics 𝑓 , 𝑔̃ are designed so that 𝑥 converges to the true state 𝑥. That is, the observer estimation error

𝑒 = 𝑥 − 𝑥 (25)

needs to converge to zero with time.
For simplicity, we focus on observing the internal states of the linear model (10) using the linear output (21). First, we

notice that the pair (𝐴,𝐶) is observable for 𝑎1 − 𝑎2𝑎3 + 𝑎2
3 ≠ 0, which was proven in [62]. Under this condition, we design a

Luenberger observer [13], [35]:
¤̂𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐿 (𝑦 − 𝑦̂) + 𝐷𝑟, (26)

where 𝑦̂ = 𝐶𝑥, 𝑓 (𝑥, 𝑟, 𝑦) = 𝐴𝑥 + 𝐷𝑟 + 𝐿 (𝑦 − 𝑦̂), 𝑔̃(𝑥, 𝑟, 𝑦) = 𝐵, while 𝐿 ∈ R𝑛×𝑛𝑦 is the constant observer gain to be designed.
Thus, we express the time derivative of (25) as

¤𝑒 = (𝐴 − 𝐿𝐶)𝑒, (27)
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where 𝐿 is chosen using pole placement so that matrix 𝐴−𝐿𝐶 is Hurwitz and the error dynamics (27) are exponentially stable.
Considering measurement noise and unmodeled dynamics, as a rule-of-thumb, the observer gain 𝐿 is preferably chosen so that
the real parts of the eigenvalues of 𝐴 − 𝐿𝐶 are not extremely low or high values.

With a well-designed observer, the error is bounded as follows:

‖𝑒(𝑡)‖ ≤ 𝑀 (𝑡), ∀𝑡 ≥ 0, (28)

where ‖.‖ is Eucledian norm, while 𝑀 (𝑡) ≥ 0 is a known time-varying function whose values are non-negative and that depends
on 𝑥0, 𝑥0. Specifically, for the Luenberger observer (26) we have the bound

‖𝑒(𝑡)‖ ≤ 𝑀0e−𝜆𝑡 , ∀𝑡 ≥ 0, (29)

where 𝑀0 ≥ 0 depends on 𝑒0 = 𝑥0 − 𝑥0, whereas 𝜆 > 0 is associated with the real part of the rightmost eigenvalue of 𝐴 − 𝐿𝐶.
Note that one could also design observers of the form (24) for the nonlinear system (4) with the general output (20), such that
they satisfy (28) with some 𝑀 (𝑡); see for example [66]. However, nonlinear observer design is out of scope of this paper, and
instead we focus on safety-critical control.

3 SAFETY-CRITICAL TRAFFIC CONTROL BY CONNECTED AUTOMATED VEHICLES

While a well-designed controller of form (15) may achieve string stable behavior for the mixed vehicle chain, it may not
guarantee that vehicles maintain safe distances between each other. Naïve stabilization of the mixed traffic could lead to unsafe
driving conditions for individual vehicles. Therefore, now we propose the strategy of safety-critical traffic control (STC), in
which we synthesize a safety-critical controller for the CAV using control barrier functions and a nominal input that stabilizes
traffic. First, two main safety requirements are identified, and various safe spacing policies are discussed. Then, control barrier
functions are used to endow the controlled traffic system with safety for a wide range of nominal controllers. Finally, the case
of output feedback is addressed. The end result is formal safety guarantees for the mixed-autonomy traffic.

3.1 Safety Requirements and Safe Spacing Policies

We address two main requirements that are needed to avoid safety-critical failures for the STC system. The first requirement
is the CAV’s safety. This means that the CAV (𝑖 = 0) maintains a safe distance to the head vehicle (𝑖 = −1), i.e., specific
constraints on the spacing 𝑠0 (𝑡) must be satisfied for all time, regardless of the HVs’ driving behavior. This guarantees the
avoidance of collision between the CAV and the head vehicle, including situations, for example, when the head vehicle brakes
abruptly due to an unexpected cut-in vehicle or crossing pedestrians. The second requirement is the HVs’ safety. This means
that all of the 𝑁 HVs (𝑖 ∈ {1, . . . , 𝑁}) behind the CAV maintain safe distances, i.e., 𝑠𝑖 (𝑡) satisfy safety constraints provided
that the HVs drive according to a selected car-following model. Importantly, while the HVs’ safety primarily depends on
their own driving behavior, it is possible to enhance their safety by controlling the CAV. For example, if the CAV makes an
unnecessarily harsh brake for its own safety, it could cause a collision in the following chain of HVs, but this can be avoided
by taking into account the HVs’ safety in the CAV’s controller design. Similarly, the CAV can also accelerate (if it is safe to
do so) to make space for the following HVs and help avoid a collision between them. That is, STC seeks to make the CAV’s
driving behavior both safe and considerate of the traffic behind it, to avoid collisions for both the CAV and the HVs.

To satisfy these requirements, we provide a set of safe spacing policies that constrain the spacings 𝑠𝑖 ahead of the CAV and
HVs. The time headway (TH) policy guarantees a minimum constant time headway 𝜏 > 0 based on the spacing and speed:

𝑠𝑖 ≥ 𝜏𝑣𝑖 . (30)

Similarly, the time-to-collision (TTC) policy maintains a minimum time-to-collision 𝜏 > 0 based on the relative speed:

𝑠𝑖 ≥ 𝜏(𝑣𝑖 − 𝑣𝑖−1). (31)

The stopping distance headway (SDH) policy guarantees a minimum stopping distance while incorporating the follower vehicle’s
braking limit 𝑎𝑖,min in addition to the time-to-collision [59]:

𝑠𝑖 ≥ 𝜏(𝑣𝑖 − 𝑣𝑖−1) +
(𝑣𝑖 − 𝑣𝑖−1)2

2|𝑎𝑖,min |
. (32)

Finally, the distance headway (DH) policy guarantees a minimum constant spacing 𝑠𝑖,min between vehicles: 𝑠𝑖 ≥ 𝑠𝑖,min. However,
this choice disregards the speed of the vehicles, hence we rather focus on the first three spacing policies. Similarly, for the
linearized system (10), we can write the safe spacing policies as

𝑠𝑖 ≥ 𝜏(𝑣̃𝑖 + 𝑣★) − 𝑠★𝑖 , (33)
𝑠𝑖 ≥ 𝜏(𝑣̃𝑖 − 𝑣̃𝑖−1) − 𝑠★𝑖 , (34)

𝑠𝑖 ≥ 𝜏(𝑣̃𝑖 − 𝑣̃𝑖−1) +
(𝑣̃𝑖 − 𝑣̃𝑖−1)2

2|𝑎𝑖,min |
− 𝑠★𝑖 . (35)
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Fig. 2: Block diagram of full-state feedback safety-critical traffic control (STC) and observer-based output feedback STC. STC
modifies a nominal controller—that stabilizes mixed traffic but is not necessarily safe—to a safety-critical controller by using a
safety filter that includes control barrier functions (CBFs). The dashed block represent the observer design for state estimation.
This block can be omitted in case of full state feedback but is included in case of output feedback.

Next, we will introduce control barrier functions to guarantee the satisfaction of these safe spacing policies in the closed-loop
system. Furthermore, we will compare the effectiveness of these policies in safety enforcement in mixed traffic control.

The above safe spacing criteria can be stated equivalently as 𝑥 ∈ C𝑖 , i.e., the state 𝑥 remains inside a safe set C𝑖 , given by

C𝑖 = {𝑥 ∈ R𝑛 : ℎ𝑖 (𝑥) ≥ 0} , (36)

where the different candidates for function ℎ𝑖 (𝑥) are defined by

ℎTH
𝑖 (𝑥) = 𝑠𝑖 − 𝜏𝑣𝑖 , (37)

ℎTTC
𝑖 (𝑥) = 𝑠𝑖 − 𝜏(𝑣𝑖 − 𝑣𝑖−1), (38)

ℎSDH
𝑖 (𝑥) = 𝑠𝑖 − 𝜏(𝑣𝑖 − 𝑣𝑖−1) −

(𝑣𝑖 − 𝑣𝑖−1)2

2|𝑎𝑖,min |
, (39)

and by the corresponding expressions with tilde.
In order to maintain safety, we seek to achieve that if the traffic system is safe initially, then the CAV’s controller prevents

safety violations for all time. That is, for any initial condition 𝑥0 ∈ C𝑖 the state of the closed-loop system must satisfy 𝑥(𝑡) ∈ C𝑖

for all 𝑡 ≥ 0 and for all 𝑖 ∈ {0, . . . , 𝑁}. In other words, the controller must render the set C =
⋂𝑁

𝑖=0 C𝑖 forward invariant under
the closed-loop dynamics. We achieve this goal by using control barrier functions.

3.2 Guaranteed Safety via Control Barrier Functions and Quadratic Programs

To design a safety-critical controller, we revisit the theory of control barrier functions. We consider affine control systems:

¤𝑥 = 𝑓 (𝑥, 𝑟) + 𝑔(𝑥)𝑢, (40)

where 𝑥 ∈ R𝑛, 𝑟 ∈ R𝑙 and 𝑢 ∈ R𝑚, while 𝑓 : R𝑛 × R𝑙 → R𝑛 and 𝑔 : R𝑛 → R𝑛×𝑚 are locally Lipschitz continuous. This may
represent the nonlinear mixed traffic system (4), or the linear system (10) by the substitution 𝑓 (𝑥, 𝑟) = 𝐴𝑥 +𝐷𝑟 , 𝑔(𝑥) = 𝐵. We
seek to keep the state 𝑥 inside a safe set C ⊂ R𝑛, that is defined by a continuously differentiable function ℎ : R𝑛 → R as

C = {𝑥 ∈ R𝑛 : ℎ(𝑥) ≥ 0} , (41)

cf. (36), where ℎ satisfies ℎ(𝑥) = 0 =⇒ 𝜕ℎ
𝜕𝑥 (𝑥) ≠ 0. We achieve this goal via control barrier functions.

Definition 1 (control barrier function [8]). Function ℎ is a control barrier function (CBF) for system (40) if there exists an
extended class-K∞ function1 𝛼 such that for all 𝑥 ∈ R𝑛:

sup
𝑢∈R𝑚

[
𝐿 𝑓 ℎ(𝑥, 𝑟) + 𝐿𝑔ℎ(𝑥)𝑢︸                     ︷︷                     ︸

¤ℎ (𝑥,𝑟 ,𝑢)

]
> −𝛼(ℎ(𝑥)), (42)

where 𝐿 𝑓 ℎ(𝑥, 𝑟) = 𝜕ℎ
𝜕𝑥 (𝑥) 𝑓 (𝑥, 𝑟) and 𝐿𝑔ℎ(𝑥) = 𝜕ℎ

𝜕𝑥 (𝑥)𝑔(𝑥).
The expression in (42) inside the brackets is the first time derivative of ℎ along the system (40). Note that condition (42)

sufficiently holds if 𝐿𝑔ℎ(𝑥) ≠ 0 for all 𝑥 ∈ R𝑛. In such a case, the first derivative of ℎ is affected by the input 𝑢 regardless of
the state 𝑥—this is termed as ℎ has relative degree one. Given a CBF, the following result on safety was established by [8].

1A continuous function 𝛼 : R→ R belongs to extended class-K∞ if it is strictly monotonically increasing, 𝛼(0) = 0 and lim𝑟→±∞ 𝛼(𝑟 ) = ±∞.
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Theorem 1 (guaranteed safety via CBF [8]). If ℎ is a CBF for system (40), then any locally Lipschitz continuous controller
𝑘 : R𝑛 × R𝑙 → R, 𝑢 = 𝑘 (𝑥, 𝑟), that satisfies

𝐿 𝑓 ℎ(𝑥, 𝑟) + 𝐿𝑔ℎ(𝑥)𝑢 ≥ −𝛼(ℎ(𝑥)), (43)

renders the set C in (41) forward invariant (safe) under the closed-loop dynamics, such that 𝑥0 ∈ C =⇒ 𝑥(𝑡) ∈ C, ∀𝑡 ≥ 0.

As such, controllers that satisfy (43) provide provable safety guarantees, while condition (42) ensures that such controllers
exist. We use (43) for safety-critical control design. Suppose that there exists a feedback controller, 𝑢0 = 𝑘0 (𝑥, 𝑟), that is
stabilizing but may not necessarily be safe. Then, the input 𝑢0 can be modified in a minimally invasive fashion to an input 𝑢
that satisfies (43) by using the following quadratic program (QP) based controller design [7]:

𝑘 (𝑥, 𝑟) = argmin
𝑢∈R

‖𝑢 − 𝑢0‖2

s.t. 𝐿 𝑓 ℎ(𝑥, 𝑟) + 𝐿𝑔ℎ(𝑥)𝑢 ≥ −𝛼(ℎ(𝑥)).
(44)

Controller 𝑢 = 𝑘 (𝑥, 𝑟) is safety-critical, and ensures safety with minimum deviation from the nominal controller 𝑢0 = 𝑘0 (𝑥, 𝑟).
Note that (44) is often called as safety filter. The role of the safety filter in STC is illustrated in Fig. 2 and discussed next.

3.3 Safety-Critical Traffic Control

Now we implement CBFs on the mixed traffic system and synthesize a STC strategy via a quadratic program. Specifically,
we rely on the CBF candidates ℎ𝑖 in (37)-(39). To apply the CBF theory, however, first we must show that these candidates
are indeed CBFs and satisfy (42). To investigate condition (42), we consider the TH policy (37) as example, although the
conclusions below hold for the other spacing policies in (38)-(39), too. Function ℎ0, that is associated with the CAV’s safety,
satisfies 𝐿𝑔ℎ0 (𝑥) = −𝜏 ≠ 0. Hence it has relative degree one and it is a valid CBF that satisfies (42). This results from the fact
that the CAV’s safety is directly affected by the CAV’s control input. However, the remaining functions ℎ𝑖 (𝑖 ∈ {1, . . . , 𝑁})
are associated with the HVs’ safety, and they are not directly affected by the CAV’s controller. Instead, 𝐿𝑔ℎ𝑖 (𝑥) = 0 and (42)
does not hold for all 𝑥 ∈ R𝑛, hence ℎ𝑖 are not valid CBFs. In fact, the control input 𝑢 shows up in the (𝑖 + 1)-st time derivative
of ℎ𝑖 , making it relative degree 𝑖 + 1. Although there exist more complex control designs for high relative degree scenarios [7],
[48], we seek to avoid this complexity, especially since the relative degree of ℎ𝑖 depends on the number of vehicles.

Instead, we propose to construct CBFs with a novel method that is compatible with all safe spacing policies. Specifically,
we modify the CBF candidates ℎ𝑖 to

ℎ̄𝑖 (𝑥) = ℎ𝑖 (𝑥) − ℎ0 (𝑥), (45)

that have relative degree one irrespective of the number of vehicles. It should be noted that ℎ̄𝑖 (𝑥) ≥ 0 and ℎ0 (𝑥) ≥ 0 are
sufficient conditions for ℎ𝑖 (𝑥) ≥ 0. Thus, ℎ̄𝑖 are valid CBFs that allow the satisfaction of the safe spacing policies given by ℎ𝑖 .

The CBFs ℎ0 and ℎ̄𝑖 lead to the following constraints on 𝑢 to satisfy the requirements of the CAV’s safety and HVs’ safety.
The constraint that guarantees safe spacing between the head vehicle and the CAV becomes

𝐿 𝑓 ℎ0 (𝑥, 𝑟) + 𝐿𝑔ℎ0 (𝑥)𝑢 + 𝛾0ℎ0 (𝑥) ≥ 0, (46)

where, for simplicity, we chose the extended class-K∞ function 𝛼 in (43) to be linear, i.e., 𝛼(ℎ0) = 𝛾0ℎ0 with a tunable constant
𝛾0 > 0. Parameter 𝛾0 balances the trade-off between safety, driving comfort and conservativeness. With a smaller 𝛾0, the CAV
typically has a less abrupt accelerations, but this choice could also result in a more conservative driving behavior. Similarly,
the constraints that yield safe spacings ahead of the HVs are given by

𝐿 𝑓 ℎ̄𝑖 (𝑥, 𝑟) + 𝐿𝑔 ℎ̄𝑖 (𝑥)𝑢 + 𝛾𝑖 ℎ̄𝑖 (𝑥) + 𝜎𝑖 ≥ 0, (47)

where 𝛾𝑖 > 0, 𝑖 ∈ {1, . . . , 𝑁}, while the role of 𝜎𝑖 ≥ 0 is explained below. In (46)-(47), the functions 𝑓 and 𝑔 can be either
from the nonlinear system (4) or the linear system (10), and a corresponding safety-critical controller can be designed based
on either of these models.

We remark that while the CBF condition (42) ensures that there exists a control input 𝑢 satisfying the safety constraint (43),
there is no such existence guarantee if multiple constraints like (46)-(47) are enforced simultaneously. In other words, the CAV’s
and HVs’ safety constraints (46)-(47) may conflict in some scenarios. In such cases, we prioritize the CAV’s safety over the
HVs’ safety by setting the CAV’s safety constraint (46) as a hard constraint and the HV’s constraints (47) as soft constraints.
This approach can be justified from four aspects: (I) the CAV’s controller is primarily responsible for its own safety; (II) if a
collision happened at the CAV, the following HVs would also be affected; (III) in practice, the HVs do not necessarily drive
according to the selected human driver model; and (IV) if the CAV’s safety constraint ℎ0 (𝑥) ≥ 0 is not satisfied, ℎ̄𝑖 (𝑥) ≥ 0
no longer implies ℎ𝑖 (𝑥) ≥ 0, i.e., the HVs’ safety may be compromised. Therefore, we resolve the conflict between multiple
safety constraints by introducing the relaxation variables 𝜎𝑖 into the HVs’ safety constraints. This makes (47) soft constraints
while keeping (46) as a hard constraint.
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Finally, we incorporate the safety constraints (46)-(47) and the traffic controller (15) that yields string stable behavior into
an optimization problem to establish the proposed STC. Specifically, while enforcing (46)-(47), we minimize the deviation of
the control input 𝑢 from the nominal stabilizing input 𝑢0. This leads to the quadratic program (QP):

𝑘 (𝑥, 𝑟) = argmin
𝑢∈R,𝜎𝑖≥0

|𝑢 − 𝑢0 |2 +
∑𝑁

𝑖=1 𝑝𝑖𝜎
2
𝑖

s.t. CAV′s safety : 𝐿 𝑓 ℎ0 (𝑥, 𝑟) + 𝐿𝑔ℎ0 (𝑥)𝑢 + 𝛾0ℎ0 (𝑥) ≥ 0,

HVs′ safety :


𝐿 𝑓 ℎ̄1 (𝑥, 𝑟) + 𝐿𝑔 ℎ̄1 (𝑥)𝑢 + 𝛾1 ℎ̄1 (𝑥) + 𝜎1 ≥ 0,

...
𝐿 𝑓 ℎ̄𝑁 (𝑥, 𝑟) + 𝐿𝑔 ℎ̄𝑁 (𝑥)𝑢 + 𝛾𝑁 ℎ̄𝑁 (𝑥) + 𝜎𝑁 ≥ 0,

(48)

cf. (44), where 𝜎𝑖 are the slack variables to relax HVs’ safety constraints and ensure the feasibility of the QP, while 𝑝𝑖 � 1 are
penalty coefficients. If the solution of the QP is 𝜎∗

𝑖 = 0, then both the CAV’s safety constraint (46) and HVs’ safety constraint
(47) are met. If 𝜎∗

𝑖 ≠ 0, then the CAV’s safety is prioritized, and the HVs are no longer guaranteed to be safe. Furthermore,
when there is a conflict between the safety and string stability of mixed traffic (i.e., 𝑢0 does not satisfy the safety constraints),
the QP enforces safety (𝑢 ≠ 𝑢0) and sacrifices string stability at the minimum cost. Finally, we remark that if there were no
following HVs connected to the CAV, then a simpler QP with only the CAV’s safety constraint (46) could still be constructed
from (48) as a special case to drive the CAV with safe adaptive cruise control.

3.4 Safety with Observer-based Control Barrier Functions

The proposed STC strategy (15)-(48) relies on full state feedback. In practice, however, some state information may not
be available to the CAV. In Section 2.3, we highlighted that this can be overcome by output feedback and state observers if
the mixed-autonomy traffic system is observable, i.e., the speed 𝑣𝑁 of the CHV is available to the CAV. In this section, we
extend the STC design to output feedback where only partial states of HVs are available. We propose to use state observers
for state estimation, that allows us to execute safety-critical controllers using an estimate of the unknown states; see Fig. 2.
Below we provide a set of simple conditions under which formal safety guarantees are maintained despite observer estimation
errors. These results follow the constructions in [3], where a comprehensive safety-critical control framework with observers
was established. For another approach on the combination of observers and CBFs, please also see [66].

Consider an observer (24) that satisfies (28). Let the CBF ℎ have the Lipschitz coefficient L > 0, satisfying:

|ℎ(𝑥) − ℎ(𝑥) | ≤ L‖𝑥 − 𝑥‖, (49)

and for simplicity, let the class-K function 𝛼 be linear, 𝛼(𝑟) = 𝛾𝑟 . Furthermore, consider the set

Ĉ(𝑡) =
{
𝑥 ∈ R𝑛 : ℎ̂(𝑥, 𝑡) ≥ 0

}
, (50)

ℎ̂(𝑥, 𝑡) = ℎ(𝑥) − L𝑀 (𝑡), (51)

where ℎ̂(𝑥, 𝑡) represents the worst-case value of ℎ(𝑥) that may correspond to an estimated state 𝑥 given the estimation error
bound 𝑀 (𝑡). Then, we have the following result on safety.

Theorem 2 (guaranteed safety with observer [3]). Consider the system (40), the safe set (41), and an observer (24) that
satisfies (28). If ℎ is a CBF for system (24) with Lipschitz coefficient L, then any locally Lipschitz continuous controller
𝑘 : R𝑛 × R𝑙 × R𝑛𝑦 → R, 𝑢 = 𝑘 (𝑥, 𝑟, 𝑦), that satisfies

𝐿 𝑓 ℎ(𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ℎ(𝑥, 𝑟, 𝑦)𝑢 ≥ −𝛾ℎ(𝑥) + L
( ¤𝑀 (𝑡) + 𝛾𝑀 (𝑡)

)
, (52)

renders set Ĉ(𝑡) in (50)-(51) forward invariant under the closed-loop dynamics, such that 𝑥0 ∈ Ĉ(0) =⇒ 𝑥(𝑡) ∈ Ĉ(𝑡), ∀𝑡 ≥ 0.
Furthermore, 𝑥(𝑡) ∈ Ĉ(𝑡) =⇒ 𝑥(𝑡) ∈ C holds, that ultimately leads to safe behavior.

Proof. First, we express the total time derivative of ℎ̂ defined in (51) as
¤̂ℎ(𝑥, 𝑡, 𝑟, 𝑦, 𝑢) = 𝐿 𝑓 ℎ(𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ℎ(𝑥, 𝑟, 𝑦)𝑢 − L ¤𝑀 (𝑡). (53)

With this, (51)-(52) lead to
¤̂ℎ(𝑥, 𝑡, 𝑟, 𝑦, 𝑢) ≥ −𝛾ℎ̂(𝑥, 𝑡). (54)

Therefore, we can apply the time-varying counterpart [70] of Theorem 1 that yields the invariance of Ĉ(𝑡). Finally, 𝑥(𝑡) ∈ Ĉ(𝑡) =⇒
𝑥(𝑡) ∈ C is equivalent to ℎ̂(𝑥(𝑡), 𝑡) ≥ 0 =⇒ ℎ(𝑥(𝑡)) ≥ 0, which can be proven by

ℎ̂(𝑥, 𝑡) = ℎ(𝑥) − L𝑀 (𝑡)
≤ ℎ(𝑥) − L‖𝑥 − 𝑥‖
≤ ℎ(𝑥) − |ℎ(𝑥) − ℎ(𝑥) |
≤ ℎ(𝑥),

(55)
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TABLE I: Parameters used for the numerical simulations

Vehicle Variable Symbol Value Unit

all

equilibrium velocity 𝑣★ 20 m/s
equilibrium spacing 𝑠★ 20 m

braking limit 𝑎min −7 m/s2

acceleration limit 𝑎max 7 m/s2

HVs

speed limit 𝑣max 40 m/s
standstill spacing 𝑠st 5 m
free flow spacing 𝑠go 35 m

model coefficients 𝑎 0.6 1/s
𝑏 0.9 1/s

CAV

gains of nominal controller

𝜇1 −2 1/s2

𝜇2 −2 1/s2

𝑘1 0.2 1/s
𝑘2 0.2 1/s

parameters of safety filter
𝜏 1 s
𝛾 10 1/s
𝑝 100 1/s2

where we used (51), (28) and (49). □

Remark 1. For output feedback, the safety condition modifies from (43) to (52), that includes the extra robustifying term
L
( ¤𝑀 (𝑡) + 𝛾𝑀 (𝑡)

)
to account for observer estimation errors. [3] highlighted that if the observer satisfies ¤𝑀 (𝑡) ≤ −𝛾𝑀 (𝑡), then

𝐿 𝑓 ℎ(𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ℎ(𝑥, 𝑟, 𝑦)𝑢 ≥ −𝛾ℎ(𝑥) (56)

is a sufficient condition for (52), i.e., the extra robustifying term can be dropped. For example, the Luenberger observer (26)
associated with the linear system (10) and error bound (29) satisfies ¤𝑀 (𝑡) ≤ −𝛾𝑀 (𝑡) if 𝜆 ≥ 𝛾. This means that, if the observer
is fast enough (characterized by 𝜆) compared to how fast the system is allowed to approach the boundary of the safe set
(expressed by 𝛾), (56) guarantees safety. This idea first appeared in [41], [55], where safety with exponentially stable tracking
controllers was established similarly to our case of safety with exponentially stable observers. Furthermore, notice that condition
𝑥0 ∈ Ĉ(0) must also hold for safety, that is stricter than 𝑥0 ∈ C. Accordingly, the initial state must be located farther inside
the safe set (ℎ(𝑥0) � 0) in case of significant initial state estimation errors. Under such conditions, the observer converges to
an accurate state estimate by the time the system may get into a safety-critical scenario, and safety is maintained.

In the context of STC, Theorem 2 leads to the following controller for the case of output feedback:

𝑘 (𝑥, 𝑟, 𝑦) = argmin
𝑢∈R,𝜎𝑖≥0

|𝑢 − 𝑢0 |2 +
𝑁∑
𝑖=1

𝑝𝑖𝜎
2
𝑖

s.t. CAV′s safety : 𝐿 𝑓 ℎ0 (𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ℎ0 (𝑥, 𝑟, 𝑦)𝑢 + 𝛾0ℎ0 (𝑥) − L
( ¤𝑀 (𝑡) + 𝛾0𝑀 (𝑡)

)
≥ 0,

HVs′ safety :


𝐿 𝑓 ℎ̄1 (𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ ℎ̄1 (𝑥, 𝑟, 𝑦)𝑢 + 𝛾1 ℎ̄1 (𝑥) − L

( ¤𝑀 (𝑡) + 𝛾1𝑀 (𝑡)
)
+ 𝜎1 ≥ 0,

...
𝐿 𝑓 ℎ̄𝑁 (𝑥, 𝑟, 𝑦) + 𝐿𝑔̃ ℎ̄𝑁 (𝑥, 𝑟, 𝑦)𝑢 + 𝛾𝑁 ℎ̄𝑁 (𝑥) − L

( ¤𝑀 (𝑡) + 𝛾𝑁𝑀 (𝑡)
)
+ 𝜎𝑁 ≥ 0,

(57)

analogously to (48).

4 NUMERICAL RESULTS

In this section, we carry out numerical simulations to show the effectiveness of the proposed STC framework. We first
describe the simulation setup, then show our main results which validate that the proposed STC (48) leads to smooth and safe
traffic in scenarios where the nominal controller (15) could yield collisions. The parameters used for simulations are given in
Table I and at the figures. Finally, we show the performance of STC in a real-world traffic scenario by using experimental
data to drive the simulations.

4.1 Simulation Setup

We simulate an STC setup that includes one head HV (HHV), one CAV, and two identical following HVs (HV-1 and HV-2).
We consider two risky traffic scenarios that could cause rear-end collision:

• Scenario 1: HHV suddenly decelerates, which may endanger the safety of all vehicles. This could be caused, for example,
by an aggressive cut-in of a vehicle from an adjacent lane, or due to an obstacle on the road.

• Scenario 2: HV-2 unexpectedly accelerates. Importantly, such accelerations of follower HVs could cause a naïve nominal
CAV controller to respond with acceleration and collide with the HHV in front of it.
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TABLE II: Acceleration of vehicles in the two safety-critical traffic scenarios

HHV CAV HV1 HV2

Scenario 1
(58) with
𝑎H = 6 m/s2

𝑡H = 3.3 s

(14) for nominal controller
(48) for STC (60) (60)

Scenario 2 0 (14) for nominal controller
(48) for STC (60)

(59)-(60) with
𝑎F = 6 m/s2

𝑡F = 2.5 s

Specifically, we prescribe the following motions for the vehicles. We assume that initially all the four vehicles drive at the
equilibrium velocity 𝑣★ and with uniform equilibrium spacing 𝑠★. In Scenario 1, the HHV brakes harshly, then accelerates to
recover its original speed, and finally cruises at constant speed:

¤𝑣−1 (𝑡) =

−𝑎H if 𝑡 ∈ [0, 𝑡H],
𝑎H if 𝑡 ∈ (𝑡H, 2𝑡H],
0 otherwise.

(58)

In Scenario 2, the HHV drives at constant speed, ¤𝑣−1 (𝑡) ≡ 0. In both scenarios, the CAV uses the nominal controller (14)
with feedback gains that satisfy the head-to-tail sting-stability condition given by (17)-(18). This nominal controller will be
incorporated into and compared with STC (48). In Scenario 1, both HVs obey the driver model (1) with specific expression
given below in (60). In Scenario 2, the motion of HV-2 is modified to accelerate before driving according to the model:

¤𝑣2 (𝑡) =
{
𝑎F if 𝑡 ∈ [0, 𝑡F],
𝐹2 (𝑠2, ¤𝑠2, 𝑣2) otherwise.

(59)

The behavior of each vehicle in the two safety-critical scenarios is summarized in Table II.
To capture the longitudinal dynamics of HVs, we use the optimal velocity model (OVM) originating from [12]:

𝐹𝑖 (𝑠𝑖 , ¤𝑠𝑖 , 𝑣𝑖) = 𝑎 (𝑉 (𝑠𝑖) − 𝑣𝑖) + 𝑏 ¤𝑠𝑖 , (60)

where 𝑉 (𝑠𝑖) is a piecewise continuous function that represents the spacing-dependent desired velocity of the human drivers. The
coefficient 𝑎 characterizes how human drivers accelerate to match their current speed 𝑣𝑖 with the desired driving speed 𝑉 (𝑠𝑖),
whereas coefficient 𝑏 represents how human drivers change their acceleration according to the speed difference ¤𝑠𝑖 between
themselves and their preceding vehicle. The OVM (60) can be linearized as (7) with parameters:

𝑎1 = 𝑎𝑉 ′ (𝑠★), 𝑎2 = 𝑎 + 𝑏, 𝑎3 = 𝑏. (61)

We use a range policy 𝑉 (𝑠) from [75] as:

𝑉 (𝑠) =


0, 𝑠 ≤ 𝑠st,
𝑣max

2

(
1 − cos

(
𝜋 𝑠−𝑠st
𝑠go−𝑠st

))
, 𝑠st < 𝑠 < 𝑠go,

𝑣max, 𝑠 ≥ 𝑠go,

(62)

where 𝑠st, 𝑠go, 𝑣max represent standstill spacing, free flow spacing and the speed limit, respectively.
Our simulations focus on the case of two following HVs governed by the OVM, which is the simplest realization of the

proposed STC. The design also works for larger numbers of HVs and other human driver models. This is demonstrated by
simulation examples in the Appendix. With this setup, we show that the proposed STC further provides safety guarantees for
the mixed-autonomy traffic. Since the nominal controller (14) is designed based on the linear model (10), we synthesize the
safety-critical controller by solving the QP (48) with 𝑓 (𝑥, 𝑟) = 𝐴𝑥+𝐷𝑟 and 𝑔(𝑥) = 𝐵 to compare with the nominal stabilization
result in [62]. When calculating the term 𝐿 𝑓 ℎ̄ in the QP (48), we treat the head vehicle’s speed as external perturbation 𝑟 (𝑡)
and we omit the partial derivative of 𝜕ℎ̄

𝜕𝑟 ¤𝑟, since it is difficult in practice to obtain an accurate measurement of the head vehicle’s
acceleration ¤𝑟 without connectivity. Although the QP (48) is formulated in continuous time, we solve it in a discrete time
with a sampling time. Based on the typical information exchange rate of vehicle-to-vehicle communication [58], we set the
sampling time as 0.05 s in Section 4.2 and as 0.1 s in Section 4.3.

4.2 Safety Improvement by STC

Now we demonstrate by our main simulation results that the proposed STC improves the safety of mixed traffic. We highlight
that while a nominal controller may lead to unsafe behavior when responding to sudden accelerations of human drivers, the
STC maintains safety. In the simulations, we use the SDH safe spacing policy with CBF candidate (39) and parameters in
Table I. First, we consider full state feedback control in the two risky traffic situations described above (Scenario 1 and Scenario
2). We evaluate safety (i.e., whether the CBF candidates ℎ𝑖 and the spacings 𝑠𝑖 stay positive over time) and head-to-tail string
stability (i.e., whether the speed perturbations of the tail vehicle are smaller than those of the head vehicle).
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Fig. 3: Numerical simulation of the proposed safety-critical traffic controller (STC) in Scenario 1. The top row shows the
behavior of mixed traffic when the CAV uses the nominal stabilizing controller (14). This achieves head-to-tail string stability
(i.e., HV-2 reduces its speed less than the HHV) but yields unsafe behavior (i.e., the CAV collides with the HHV). The bottom
row shows that the proposed STC (48) guarantees safety.
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Fig. 4: Numerical simulation of Scenario 2. Similar to Fig. 3, this scenario highlights that certain behaviors of HVs can make
the nominal controller of the CAV drive in an unsafe way (top), while the proposed STC recovers safe behavior (bottom).

Figure 3 shows simulation results for Scenario 1, including the spacing 𝑠𝑖 , velocity 𝑣𝑖 , acceleration 𝑎𝑖 and CBF candidate ℎ𝑖
of each vehicle for the cases of using the nominal controller (top) and the proposed STC (bottom). When the HHV suddenly
reduces its speed, the nominal controller reduces the CAV’s speed significantly less than the HHV does in order to achieve
head-to-tail string stability. However, the CAV’s deceleration ends up being too small, causing a collision between HHV and
the CAV. This is indicated by 𝑠0 < 0 along the red curve in Fig. 3. In contrast, with the proposed STC the CAV decelerates
more and avoids collision with formal guarantees of safety. We remark that ℎ0 becomes slightly negative, which is caused by
implementation inaccuracies (finite sampling time and neglecting 𝜕ℎ̄

𝜕𝑟 ¤𝑟). It should be noted that the HVs are collision-free and
safe, although their safety was encoded as soft constraints in STC. Moreover, head-to-tail string stability is still achieved with
STC, as HV-2 reduces its speed less than the HHV.

Figure 4 presents simulation results for Scenario 2, by comparing the nominal controller (top) and STC (bottom). This
scenario highlights that if a vehicle at the end of the chain accelerates, like HV-2 does, it can force the nominal controller of
the CAV to accelerate and compromise the CAV’s safety. By using STC, however, safe behavior is ensured for the CAV by
the safety filter that is wrapped around the nominal controller.

In the results presented so far, the CAV’s controller relies on the true state 𝑥 and uses full state feedback. Now we address
the scenario of output feedback, wherein the output 𝑦 in (22) is available rather than the full state 𝑥. We use the state observer
in (26) to establish an estimate 𝑥 of the state (with initial estimate 𝑥0 = [0, 0, 5, 5, 5, 0]>). We compare two controllers:

• “naïve” observer-based STC that evaluates (48) with the estimated state 𝑥, without considering the estimation error 𝑥 − 𝑥;
• robust observer-based STC (57) that takes into account the estimation error.
Figure 5 shows simulation results for STC with observer in the naïve (top) and robust (bottom) implementations in Scenario
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Fig. 5: Observer-based STC for guaranteed safety of mixed traffic with output feedback. A naïve implementation of observer-
based STC (top), that disregards the observer’s state estimation errors and directly evaluates (48) with the state estimated by
the observer (26), can potentially cause safety violations. The robust implementation of observer-based STC (bottom), that
takes into account the estimation error in (57), maintains formal safety guarantees.

TABLE III: Parameters used for simulations driven by the NGSIM data

Vehicle Variable Symbol Value Unit

all

equilibrium velocity 𝑣★ 8 m/s
equilibrium spacing 𝑠★ 14.8 m

braking limit 𝑎min −7 m/s2

acceleration limit 𝑎max 7 m/s2

HVs

speed limit 𝑣max 46.9 m/s
standstill spacing 𝑠st 1.6 m
free flow spacing 𝑠go 50 m

model coefficients 𝑎 0.16 1/s
𝑏 0.63 1/s

CAV

initial spacing 𝑠0 (0) 50 m

gains of nominal controller

𝜇1 −2 1/s2

𝜇2 −2 1/s2

𝑘1 0.2 1/s
𝑘2 0.2 1/s

parameters of safety filter
𝜏 3 s
𝛾 10 1/s
𝑝 100 1/s2

2 with 𝑎F = 6 m/s2 and 𝑡F = 2.2 s. The figure highlights that the robust STC implementation leads to safer behavior (see the
blue curves), thanks to taking into account the observer’s estimation error bound in a provably safe fashion. As opposed, the
naïve STC implementation no longer has formal safety guarantees when utilized with estimated state instead of true state.

While these results demonstrate the efficacy of STC, the Appendix provides a more extensive simulation study. These
simulations address the effects of acceleration limits, as well as the choice of controller parameters and safe spacing policy.

4.3 Validation Using NGSIM Data

Finally, we demonstrate the applicability of STC to real-world traffic scenarios by using experimental data for the trajectory
of the HHV while simulating the motions of the other vehicles.

We leverage the Next Generation Simulation (NGSIM) dataset that is widely used in transportation research. In particular,
we use the reconstructed trajectory data from [45], that contains information about the motions of vehicles on highway I80
in Emeryville, California, including their position and speed as a function of time, with a resolution of 0.1 second. We select
a vehicle (specifically, vehicle-2169) whose motion contains significant speed fluctuations, hence it poses a challenge for
controlling a CAV behind it in a safety-critical fashion. The trajectory of this vehicle, including its speed and acceleration, is
plotted in Fig. 6 by dashed purple line. Notice the abrupt braking at around 𝑡 = 4 s, which can cause danger for the following
vehicles. We use this speed profile as the speed of the HHV to simulate the motions of the CAV and the following HVs.

Figure 6 presents simulation results that compare the nominal controller and STC (with the SDH policy). The simulation
parameters of the OVM (60)-(62) are given in Table III (note that these were calibrated to the NGSIM dataset). The initial speeds
of the CAV and the two HVs were set to 𝑣0 (0) = 𝑣1 (0) = 𝑣2 (0) = 𝑣★, and the initial spacings were chosen as 𝑠1 (0) = 𝑠2 (0) = 𝑠★

while 𝑠0 (0) was set independently. The figure clearly reveals that the proposed STC framework is able to successfully modify
the nominal controller and endow it with safe behavior, while the nominal controller on its own could cause collision between
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Fig. 6: Implementation of safety-critical traffic control (STC) in a real-world traffic scenario. The motion of the head HV is
given by a trajectory from the NGSIM dataset, measured on highway I80 in California. Meanwhile the CAV and the following
HVs are simulated, using the nominal controller (14) and the proposed STC (48). Remarkably, STC (bottom) is able to maintain
safety when the head vehicle performs a harsh brake that happened in real life. This way, STC improves safety compared to
the nominal controller (top), while leveraging the beneficial properties of this controller.
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Fig. 7: Safety regions of the nominal controller and STC with three safe spacing policies, for the real-world traffic scenario
presented in Fig. 6. If initial conditions are selected from the shaded domain (with gray, blue, green and red shadings for
the cases of the nominal controller, and STC with the TH, TTC and SDH policies, respectively), then all vehicles avoid
collision, even with limited acceleration capabilities. Clearly, the nominal controller requires large initial spacing to showcase
safe behavior, while STC is able to prevent collisions for significantly smaller spacing.

the CAV and the HHV. Importantly, the harsh braking of the HHV happened in real life, hence it is crucial to maintain safety
guarantees while attempting to regulate the traffic flow with the motion of the CAV.

Finally, we further analyze to which extent STC improves safety. We repeat the simulation in Fig. 6 for various initial
conditions. The motion of the HHV is kept the same (given by the experimental data), and the initial velocity 𝑣0 (0) and initial
spacing 𝑠0 (0) of the CAV are varied (while the rest of the initial conditions of HVs are determined by 𝑣0 (0) = 𝑣1 (0) = 𝑣2 (0) = 𝑣★

and 𝑠1 (0) = 𝑠2 (0) = 𝑠★). Figure 7 shows the result of executing the nominal controller and STC with the three different
safe spacing policies. For each case, thick lines with markers indicate the boundary of the shaded safety region where initial
conditions are associated with collision-free motion for all vehicles. STC significantly enlarges the safety region of the nominal
controller and, as a result, improves the safety of mixed traffic. Importantly, STC achieves this by incorporating and leveraging
the nominal controller, while providing formal guarantees of safety.

5 CONCLUSIONS

In this paper, we proposed a safety-critical traffic control (STC) framework, in which the longitudinal motions of connected
automated vehicles (CAVs) are regulated amongst human-driven vehicles (HVs) in mixed-autonomy traffic flows. The objective
of STC is to guarantee safe, collision-free behavior. We formulated STC as a safety filter using control barrier functions (CBFs),
that endows a nominal controller capable of attaining string stability with formal safety guarantees. We considered the safety
of both the CAV and the following HVs. Moreover, we employed state observer-based CBFs to establish STC when the CAV
does not have access to all the states of the following HVs. In our future work, we plan to address feedback, communication
and actuation delays for the safety-critical control of mixed-autonomy traffic, and investigate control design for multiple CAVs.
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APPENDIX

A. Effect of Human Driver Model

In Section 4, we show that the STC enhances safety and avoids collision if we use the optimal velocity model (OVM) to
describe human driver behavior. Now we demonstrate that STC also works for other choices of human driver model. We use
intelligent driver model (IDM) as an example. The IDM describes the acceleration of HV-𝑖 as

𝐹𝑖 (𝑠𝑖 , ¤𝑠𝑖 , 𝑣𝑖) = 𝑎
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with the typical parameter values fitted to human driver data in [18], see Table IV.
The trajectories obtained by the nominal controller and STC are shown in Fig. 8 for Scenario 1. Similar to the OVM, we can

conclude with the IDM that STC guarantees the safety of mixed traffic while the nominal controller could cause a collision.

TABLE IV: Parameters used for the intelligent driver model

Vehicle Variable Symbol Value Unit

HVs

speed limit 𝑣0 36 m/s
standstill spacing 𝑠0 3.3 m

time headway 𝑇 0.76 s
exponent 𝛿 6.13 -

maximum acceleration 𝑎 2.43 m/s2

deceleration coefficient 𝑏 8.5 m/s2
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Fig. 8: Numerical simulations with the intelligent driver model (IDM) in Scenario 1. When the leading vehicle decelerates,
the nominal controller (top) causes a collision for the CAV, while the proposed STC controller (bottom) guarantees safety.

B. Effect of Number of Following Vehicles

In Section 4, we consider 𝑁 = 2 following HVs to show that the STC enhances the safety of mixed traffic. Now we
demonstrate the performance of STC for larger numbers of vehicles. Theoretically, the proposed STC works with guaranteed
safety for any number 𝑁 of following vehicles. Since STC is formulated as a quadratic program (48), it can be solved efficiently
even for large numbers of constraints (corresponding to large numbers of vehicles). In practice, however, the size of the vehicle
chain whose state the CAV may have access to is restricted by the range of the vehicle-to-vehicle communication. For example,
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Fig. 9: Performance of STC when a mixed traffic including 𝑁 = 12 HVs is controlled by the motion of a single CAV in
Scenario 1. Safety guarantees are maintained despite the relatively large number of vehicles.
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Fig. 10: Performance of STC with 𝑁 = 12 HVs in Scenario 2. While the CAV is still guaranteed to be safe, it is more
challenging to enhance the safety of the following HVs for such large number of vehicles.

the typical range of dedicated short range communication (DSRC) devices is a few hundred meters [11], [44]. Considering
𝑅 = 300 m communication range with our settings of equilibrium gap 𝑠∗ = 20 m and vehicle length 𝑙 = 5 m, this corresponds
to a vehicle chain with at most 𝑁 = 𝑅/(𝑠∗ + 𝑙) = 12 following vehicles.

We run simulations with 𝑁 = 12 HVs governed by the OVM, and present the results in Fig. 9 for Scenario 1 and Fig. 10
for Scenario 2. We see that the STC maintains safety while the nominal controller causes a collision. For Scenario 1 (sudden
deceleration of HHV), the size 𝑁 of the vehicle chain has a marginal effect on safety, since the primary risk comes from the
interaction of the CAV and HHV. However, the oscillations of the vehicle chain can increase with the number of vehicles. In
other words, the STC controller might need to sacrifice more string stability in exchange for safety. For Scenario 2 (sudden
acceleration of the last HV), it is expected that a larger number 𝑁 of HVs implies a more challenging control problem for
the CAV. When the CAV accelerates to help avoid collision between HV-𝑁 and HV-(𝑁 − 1), it takes time for the CAV’s
effect to propagate through the chain of following HVs. For smaller 𝑁 , the propagation time is shorter, hence the STC is able
to mitigate a collision. For larger 𝑁 , the propagation time is longer, which may cause a collision before the following HVs
begin to accelerate, and the STC may fail to assist the HVs in collision avoidance. Hence, the acceleration allowed for the last
following vehicle is smaller in the case of 𝑁 = 12 in Fig. 10 than for 𝑁 = 2 following vehicles in Fig. 4.

C. Analysis of STC parameters

In this part, we investigate the STC performance in more detail. We include a discussion about the effects of acceleration
limits, the selection of parameters, and the choice of spacing policy. Through these, we highlight some limitations of the present
approach and give suggestions on how to overcome them. For simplicity, we conduct this analysis for full state feedback without
incorporating observers into the control loop.

First, we highlight that safety may be affected by the acceleration capabilities of vehicles. Notice that the control input 𝑢 of
the proposed STC (48) and the accelerations ¤𝑣𝑖 obtained from the human driver model (60) can take any real value. In practice,
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Fig. 11: The effect of acceleration limits on the performance of STC. The safety of mixed traffic is negatively impacted by
the acceleration limits compared to the case with no limits shown at the bottom of Fig. 3.
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Fig. 12: The effect of speed and acceleration range of the perturbed HV on the safety of STC, as a function of parameter
𝜏 used in the SDH safe spacing policy. The grey shaded area is the range of speed perturbations to which the nominal
controller responds safely, and the colored areas are the additional safety regions guaranteed by STC with different choice of
𝜏. Remarkably, STC is able to keep the entire vehicle chain safe for a wide range of velocity perturbations, if a proper value
of 𝜏 is chosen. For example, in the case of 𝜏 = 1 s, the shaded safe region of STC covers most of the speed perturbations in
panels (a)-(d), namely all speed and acceleration values combination in the region above the red-colored line.

however, vehicles have limited acceleration capabilities, hence these quantities are constrained to the range [𝑎𝑖,min, 𝑎𝑖,max]. To
investigate the effect of acceleration limits on safety, we conduct simulations where the accelerations are saturated as ¤𝑣0 = sat(𝑢)
and ¤𝑣𝑖 = sat

(
𝐹𝑖 (𝑠𝑖 , ¤𝑠𝑖 , 𝑣𝑖)

)
, 𝑖 ∈ {1, . . . , 𝑁}, with

sat(𝑢) = max
{
𝑎min,min{𝑢, 𝑎max}

}
(64)

and uniform acceleration limits 𝑎min and 𝑎max for each vehicle given in Table I.
Figure 11 presents the effect of acceleration limits on safety. Here, the simulation scenario and parameters correspond to

the bottom of Fig. 3, except that the saturation function is also incorporated into the dynamics. The red curves in the figure
highlight that there exist scenarios in which acceleration limits affect safety (i.e., 𝑠0 goes negative when the acceleration of
the CAV saturates), since these limits are not incorporated into the STC design. While addressing bounded control inputs
(limited acceleration) is possible by CBF theory [2], [23], [34] and could be included in STC, it is a nontrivial task and greatly
increases the complexity of control design—hence it is left for future work. Instead, in this paper, we quantify the amount of
safety violations due to the saturation, and tune the controller parameters to eliminate these violations.

Specifically, we investigate the effects of three main sets of tunable parameters in STC (48): the time 𝜏𝑖 in the CBF candidates,
the coefficient 𝛾𝑖 in the safety constraints, and the penalty 𝑝𝑖 in the cost. For simplicity, we keep these parameters to be the
same for all vehicles, and we use the short notation 𝜏, 𝛾, 𝑝. The default values of these parameters (used in the previous
figures) are listed in Table I. Now we analyze how these parameters affect the performance of STC.

In particular, we characterize how abrupt HV motions can be handled by STC with limited acceleration as a function of
parameters 𝜏, 𝛾, 𝑝. To achieve this, we conduct a large number of simulations with various 𝑎H, 𝑡H, 𝑎F, 𝑡F values characterizing
the motion of the HVs in (58)-(59). In Scenario 1, we quantify how much the HHV can reduce its speed without causing
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Fig. 13: Comparison of STC implemented with the time headway (TH), time-to-collision (TTC) and stopping distance headway
(SDH) safe spacing policies given in (30)-(32), using the metrics introduced in Fig. 12.

collision, i.e., we identify the safe range of the minimum speed 𝑣−1,min = 𝑣★ − 𝑎H𝑡H for which the response of the vehicles
satisfies 𝑠𝑖 (𝑡) ≥ 0. In Scenario 2, we quantify how much HV-2 can increase its speed without causing collision, i.e., we calculate
the safe range of 𝑣2,max = 𝑣★ + 𝑎F𝑡F for which 𝑠𝑖 (𝑡) ≥ 0. We calculate these by considering both the entire vehicle chain (such
that 𝑠𝑖 (𝑡) ≥ 0, ∀𝑖 ∈ {0, 1, 2}), and also separately for the CAV (𝑠0 (𝑡) ≥ 0), HV-1 (𝑠1 (𝑡) ≥ 0) and HV-2 (𝑠2 (𝑡) ≥ 0).

Figure 12 shows the safe regions of 𝑣−1,min in Scenario 1 (top) and 𝑣2,max in Scenario 2 (bottom) for various accelerations
𝑎H and 𝑎F, respectively. These results are presented for fixed 𝛾 and 𝑝, while varying 𝜏. We make the following conclusions.

• In Scenario 1, there is no collision for HV-1 and HV-2 for all values of 𝜏 even if the HHV brakes to a complete stop,
since the safe range of 𝑣−1,min covers the whole interval [0, 𝑣★] in Fig. 12(c) and (d). The safety of the vehicle chain
is therefore determined by the safety of the CAV. Considering the CAV’s safety in Fig. 12(b), the safe range of 𝑣−1,min
grows by increasing 𝜏, since larger 𝜏 corresponds to larger safe spacing. Ultimately, STC makes the CAV avoid collisions
for any HHV motion if 𝜏 is selected to be large enough—even with limited acceleration capability.

• In Scenario 2, the CAV still avoids collision with STC if 𝜏 is large enough. According to Fig. 12(f), the safe range of
𝑣2,max covers the whole interval [𝑣★, 𝑣max] for almost all choices of 𝜏 except the smallest value. The trend is the opposite
for HV-2, where the safe range of 𝑣2,max shrinks for the largest value of 𝜏; see panel (h). Meanwhile, HV-1 avoids collision
for any 𝜏; see panel (g).

Moreover, notice that STC (in color) outperforms the nominal controller (gray) in both scenarios, since the safe ranges of
𝑣−1,min and 𝑣2,max are significantly larger for STC. That is, STC is able to avoid collision even for large speed perturbations,
including cases when the head vehicle decelerates to zero speed, while this may not be achieved by linear controllers like (14).
Importantly, [36] also highlighted that linear controllers could fail to stabilize the traffic or to avoid a collision in case of large
perturbations from the equilibrium states. STC, on the other hand, showcases collision-free behavior even though it was designed
based on a linear model and evaluated for the nonlinear dynamics in this example. Finally, we performed the same analysis
by varying 𝛾 in the range 𝛾 ∈ {5, 10, 15} while keeping 𝜏 and 𝑝 fixed, and by varying 𝑝 in the range 𝑝 ∈ {10, 100, 1000}
while keeping 𝜏 and 𝛾 fixed. We found that the STC is less sensitive to 𝛾 and 𝑝, as there is only slight variation in the safe
ranges of velocity perturbations. These analyses justify the parameter selection in Table I.

Collision-free behavior not only depends on the parameters of the controller but also on the safe spacing policy implemented.
So far, we showed results for the case of the SDH policy only. Now we compare the TH (30), TTC (31) and SDH (32) safe
spacing policies. While there has been related research comparing the TH and TTC policies [61], a detailed comparison of
these in the context of safety-critical traffic control have not yet been investigated.

Figure 13 shows the safe ranges of HV velocity perturbations using the different safe spacing policies. Considering the
entire vehicle chain, we find that the safe region of the SDH policy is larger than those of the other two policies in Scenario
1, and the difference between the three policies is negligible in Scenario 2. This showcases the ability of the proposed STC
framework to accommodate various spacing policies.


